Chapter 6: Arrays and Strings 173

a(0)] =1
afll =5
al2] = 6
a(3] = 8
af4] = 9

Initialization at Definition
Arrays can be initialized at the point of their definition as follows:
data-type array-namelsize] = { list of values separated by comma };

For instance, the statement

int age[5] = { 19, 21, 16, 1, 50 };
defines an array of integers of size 5. In this case, the first element of the array age is initialized with 19,
second with 21, and so on as shown in Figure 6.5. A semicolon always follows the closing brace. The
array size may be omitted when the array is initialized during array definition as follows:

int agel] = { 19, 21, 16, 1, 50 };
In such cases, the compiler assumes the array size to be equal to the number of elements enclosed
within the curly braces. Hence, in the above statement, the size of the array is considered as five.

f
int age(5] = {19,21,16,1,50}; 19 age[0]
or 21 age(l]
int age(] = {19,21,16,1,50); 16 age[2]
1 age(3]
L—noarraysize 50 agel[4]

Figure 6.5: Array initialization at its definition

Caution! No Array Bound Validation

C++ does not support bound checking i.e., it does not check for the validity of the array index value
while accessing the array elements. If the program tries to store something beyond the size of an array,
neither the compiler nor the run-time will indicate the error. Such a situation may cause overwriting of
data or code leading to fatal errors. Therefore, the programmer has to take extra care to use indexes
within the array limits. For example, consider the following program:
void main()
{
int agel 40];
age[50] = 11;
agel 50]++;
}

It defines age to be an array of 40 integers, and then modifies the 51* element! The compiler does not
consider such an access as illegal and produces the executable code. Execution of such programs can
behave in an unpredictable manner. Detecting such errors in a program is a difficult and time consuming
task. Thus, it is the responsibility of the programmer to see that the value of an array index is within the
array bounds while accessing an array element.

174 Mastering C++

6.3 Array lllustrations

The program elder . cpp finds the age of the eldest and youngest person in a family. It reads the ages
of all the members of a family stores them in an array and then scans the array to find out the required
information.

// elder.cpp: finding youngest and eldest person age
#include <iostream.h>
void main ()
{
int i, n;
float age[25], youhger, elder;
cout << "How many persons are there in list <max-25> ? *;
cin >> n;
for(i =0; 1 < n; i++)
{
cout << "Enter person" << i+l << ™ age: ";
cin >> agel[i];
}
// finding youngest and eldest person age begins here
younger = age([0];
elder = age[0];
for (i = I; i < n; i++)
{
if(age[i] < younger)
younger = agel[i]:
else
if(age{i] > elder)
elder = ageli];
}
// finding younger and elder person ends here
cout << "Age of eldest person is " << elder << endl;
cout << *Age of youngest person is " << younger;
}

Run

How many persons are there - in list <max-25> ? 7
Enter personl age:
Enter person2 age:
Enter person3 age:
Enter persond age:
Enter personb age:
Enter personé age:
Enter person7 age:
Age of eldest person is 45
Age of youngest person is 4

RELEESR

Bubble Sort

A classical bubble sort is the first standard sorting algorithm most programmers learn to code. It has
gained popularity because it is intuitive, easy to write and debug, and consumes little memory. In each

Chapter 6: Arrays and Strings 175

pass, the first two items in a list are compared and placed in the correct order. Items two and three are
then compared and reordered, followed by items three and four, then four and five, and so on. The sort
continues until a pass with no swap occurs. High-value items near the beginning of a list (as shown in
Figure 6.6) move to their correct position rapidly and are called turtles, because they move only one
position with each pass. The program bubble . cpp illustrates the implementation of the bubble sort.

i=0; j =0 j =1 j =2 j=3
6 6 6 6
10 ;> 10 2 2 2
2 ;) 10 8 8
8 8 ;> 10 3
3 3 ;> 10

=1 j=20 j=1 j=2
6 2 2 2
2 ;> 6 6 6
8 8 '> 8 3
3 3 3 ;> 8
10 10 10 10
i=2; 3§ =0 j=1
2 2 2
6) 6 3
3 3 '> 6
8 8 8
10 10 10
1=3; j=0
2 2
3 n> 3
6 6
8 8
10 10

Figure 6.6: Trace of Bubble Sort

176 Mastering C++

// bubble.cpp: sorting of numbers using bubble sorting
#include <iostream.h>
void main()

{
int i, j, n, age[25]), flag, temp;
cout << "How many elements to sort <max-25> ? *;
cin >> n;
for(i =0; 1 < n; i++)
{
cout << "Enter age|[" << i << *]: *;
cin >> agel[il;
}
// sorting starts here using bubble sort technique
for(i = 0; 1 < n-1; i++) // for i = 0 to n-2
{
flag = 1;
for(j = 0; j < (n-1-i); j++) // for j = 0 to (n-i-2)
{
if(age(j] > agel[j+1])
{
flag = 0; // still not sorted and requires next iteration
// exchange contents of age[j] and age[j+1]
temp = ageljl;
age[j] = age[j+1];
age[j+1] = temp;
}
}
if(flag)
break; // data are now in order; no need of next iteration
}
// sorting ends here
cout << "Sorted list..." << endl;
for(i =0; i <n; i ++)
cout << age[i] <& " *;
}
Run

How many elements to sort <max-25> ? 7
Enter agel[0 }]:
Enter age|
Enter age|
Enter agel
Enter agel|
Enter age/
Enter agel
Sorted list...
12345629

Comb Sort

Comb sort is a generalization of the bubble sort that permits comparison of non-adjacent items. It retains
the simplicity of a bubble sort, but with a dramatic increase in speed. Consider a sample list of 100

oy b= B I R0 K Ko

D W
— e et e

Chapter 6: Arrays and Strings 177

elements to be arranged in the ascending order. In this method elements are compared to sort them and
the space between the elements to be compared is known as the gap. (For instance, the gap in bubble
sortis one.) A gap of 80 would compare elements 1 and 81,2 and 82, ..., and 20 and 100, and switch pairs
when appropriate. Such a pass would take 20 comparisons rather than the 99 of an equivalent bubble
sort. The benefit is that the swap could move the elements as much as 80 notches closer to their final
destination. It is found that the ideal way to select the next gap is to divide the previous gap by 1.3
(which is known as the shrinking factor). The shrinking factor 1.3 has been experimentally found out to
be the optimal value. The gap value remains constant once it reaches 1. A bubble sort is converted into
comb sort by the following process:

o Initialize the gap with 1 in the inner loop.
« Initialize the gap size and the dimension of the list.

« Recalculate the gap with the do-loop by dividing the previous gap by 1.3, taking the integer part and
using the result or 1, whichever is greater.

« Repeat the loop until the gap is 1 and the switch counter is 0, indicating that the sort operation is
completed.

The program comb . cpp illustrates the implementation of the comb sort. The only difference be-
tween bubble sort and comb sort is that, in bubble sort, the turtles (data) crawl whereas in comb sort
they jump. Successively shrinking the gap is analogous to combing long, tangled hair—stroking first
with fingers alone, then with a pick comb that has widely spaced teeth, foilowed by finer combs with
progressively closer teeth. Comb sort has a similar shrinking effect on the gap (hence, the name comb
sort). Each stroke presorts the list (i.e., it kills or winds up some turtles). Therefore, by the time the gap
declines to unity (a Bubble sort), all the elements are so close to their final position that applying a
bubble sort at this stage is efficient.

// comb.cpp: sorting of numbers using comb sorting
#define SHRINKINGFACTOR 1.3
#include <iostream.h>
void main{()
{
int i, j, n, age[25], flag, temp;
cout << "How many elements to sort <max-25> ? ";

cin >> n;
for(i = 0; i < n; i++)
{

cout << "Enter age[" << i << ™]J: "*;
cin >> age[i];
}
// sorting starts here using comb sort technique
int size = n;
int gap = size; // gap is initialized to size i.e, length of a list
do
{
gap = (int) (float(gap)/SHRINKINGFACTOR) ;
switch(gap)
{
case 0:
gap = 1; // the smallest gap is 1 as in bubble sort
break;

178 Mastering C++

case 9:
case 10:
gap = 11;
break;
}
flag = 1;
int top = size - gap;
for(i = 0; i < top; i++)
{
j = i+gap;
if(agel[i] > agelj])
{
tlag = 0; // still not sorted and requires next iteration
// exchange contents of age(i] and age(j]
temp = agel[i];
agel[i] = agel(jl:
age([j] = temp;
}
}
} while(!flag || gap > 1);
// sorting ends here
cout << "Sorted list..." << endl;
for(i =90; i <n; i ++)
cout << age[i] << " *;

}
Run

How many elements to sort <max-25> ? 7
Enter agel[0]:
Enter agel
Enter age/|
Enter age [
Enter agel
Enter age(
Enter age(
Sorted list..
1234569

Although the algorithm for comb sort and shell sort appear to be very similar (both use a gap and a
shrink factor), they do in fact perform differently. The shell sort does a complete sort (until there are no
more swaps to be made) foreach gap size. comb sort makes only a single pass for each gap size--it can
be thought of as a more optimistic version of the shell sort. There are other differences that result from
this optimism: The ideal shrink factor for shell sort is 1.7, compared with 1.3 of comb sort. The complexity
obtained by plotting sorting time against the list of size n, for shell sort, appears as a step function of
(n*log,n*log,n), whereas for comb sort it approximates to a flatter curve of (n * log,n).

oUW R
oy = 1o b ko kw

6.4 Multi-dimensional Arrays

Most of the scientific data can be easily modeled using multi-dimensional arrays. Such representations
allow manipulation of data easily and even allow the programmer to write simple and efficient programs.
Matrix is a two dimensional artay and two subscripts are required to access each e¢lement.

Chapter 6: Arrays and Strings 179

Definition
A multidimensional array is defined as follows:
daia-type array-name[s1[s2]...[sn];
For instance, the statement
int axis[3](31[2];
defines a three-dimensional array with the array-name axis.
The general format for defining a two-dimensional array is
data-type array-name[row-size][column-size];
For instance, the statements
int marks([4][3]);
float b{31(3];
define arrays named marks and b respectively. The expression marks [0] [0], accesses the first
element of the matrix marks and marks [3] [2] accesses the last row and last column. The expres-
sion b[2] [1], accesses the 3" row and 2™ column element of the b matrix. The representation of a
two-dimensional array in memory is shown in Figure 6.7.

)
marks [0}
——>
(80 } marks [0] [0]
O R }marks[om]
subject code marks [1] \ e }marks o2
0 1 9 (7S }marks[1][0]
o8| |7 |[F—— U es }mamsmm
rollno, | 2B |0 } marks [2] | |70+ }marks 1112]
2|55 |70 |65 } >
3|85 |35 |50 |\l— o }marks (2110l
ceee P } marks [2] [1)
int marks([4]{3];
marks [3] | SN E }marks 2112

<85 } marks [3] [0]

cee 3B } marks [3] [1]

(| } marks [3] [2]

Figure 6.7: Two dimensional array to store marks

180 Mastering C++

Accessing two Dimensional Array Elements

The elements of a two dimensional array can be accessed by the following statement
marks([i] [j]

where i refers to the row number and j refers to the column number. The subscripts must be integer
constants or variables or they can be expressions generating integer results. The programmatrix. cpp

illustrates the use of two dimensional arrays in matrix addition and subtraction.

// matrix.cpp: addition and subtraction of matrices
#include <iostream.h>
void main()
{
int a[5]([5), b[5][5], c[5](5];
int i, j, m, n, p, q;
cout << "Enter row and column size of A matrix: *;
cin >> m >> n;
cout << "Enter row and column size of B matrix: ";
cin >> p >> q;
if((m == p) && (n == q)) // check if matrices can be added
{
cout << "Matrices can be added or subtracted...\n";
// Read matrix A
cout << "Enter matrix A elements...\n*;
for(i = 0; i < m; ++i)
for(j = 0; j < n; ++3)
cin >> ali)[j]);
// Read matrix B
cout << "Enter matrix B elements...\n";
for(i = 0; i < p; i++)
for(j = 0; j < q; j++)
cin >> b[i](i];
// Addition of two matrices: C <- A + B
for(i = 0; 1 < m; i++)
for(j = 0; j< n; j++)
cli) (3] = al(i)[3] + blil(]}:
// printing summation
cout << "Sum of A and B matrices...\n";
for(i = 0; i < m; ++1i)
{
for(j = 0; j < n; ++3)
cout << c[i][j] << » *;
cout << endl;
}
// Subtraction of two matrices: C <- A - B
for(i = 0; 1 <m; 1i++)
for(j = 0; j < n; j++)
clil (j] = alil(j] - blil[3];
// printing matrix subtraction result
cout << "Difference of A and B matrices...\n*;
for(i = 0; i < m; ++1i)

for(j = 0; j < n; ++3)

cout.width(2);
cout << c[i][j] << " *;

cout << endl;

)
Run

Enter row and column size of A matrix:
Enter row and column size of B matrix:
Matrices can be added or subtracted...

Enter matrix A elements...
123
431
312
Enter matrix B elements...
321
332
121

Sum of A and B matrices...

[N -
w o

4

3

3

pifference of A and B matrices..
-2 0 2

1 0 -1
2 -1 1

Initialization at Definition

ko f

[

Chapter 6: Arrays and Strings

A two-dimensional array can be initialized during its definition as follows:

data-type matrix-name[row-size)[col-size] = {

{ elements of first row },
{ elements of second row },

{ elements of n-1 row }
},.
For instance, the statement
int a(3][3] =

{1, 2, 31},
{4, 3,11,
(3,1, 2}

}i

181

defines two dimensional array of order 3x3 and initializes all its elements. The first subscript (size of the

182 Mastering C++

row) can be omitted. Hence, the above definition can be replaced by

int a[]I[3] =

{
{1, 2, 31},
{4, 3, 11,
{3,1, 2

The inner braces can be omitted, permitting the numbers to be written in one continuous sequence as
follows:

int a{l(3) = (1, 2, 3, 4, 3, 1, 3, 1, 2 };
It has the same effect as the earlier definitions, but it suffers from readability.

6.5 Strings

Strings are used in programming languages for storing and manipulating text, such as words, names,
-and sentences. It is represented as an array of characters and the end of the string is marked by the
NULL (' \0 ') character. String constants are enclosed in double quotes. For instance,

"Hello World"
is a string. A string is stored in memory by using the ASCII codes of the characters that form the string.
The representation of the string Hello World in memory is shown in Figure 6.8.

—_—)
H
e
1
1
o
character string
terminated by a
null character "\0' ‘Z
r
1
d
\0
_—

Figure 6.8: String representation in memory

Definition

An array of characters representing a string is defined as follows:
char array-name[size];

As usual, the size of the array must be an integer value. For instance, the statement
char name(50];

defines an array and reserves 50 bytes of memory for storing a set of characters. The length of this
string cannot exceed 49 since, one storage location must be reserved for storing the end of the string

Chapter 6: Arrays and Strings 183

marker. The program name . cpp defines an array and uses it to store characters.

// name.cpp: read and display string
#include <iostream.h>
void main()
{
char name(50]; // string definition
cout << "Enter your name <49-max>: *;
cin >> name;
cout << "Your name is " << name;

}

Run

Enter your name <49-max>: Archana

Your name is Archana

In main (), the statement

cin >> name;

reads characters and stores them into the variable name. The statement
cout << "Your name is " << name;

outputs the contents of the string variable name.

Initialization at the Point of Definition
The string variable can be initialized at the point of its definition as follows:

char array-name(size] = { list of values separated by comma };
For instance, the statement
char month{] = { 'A','p','x','i','1l', 0 };
defines the string variable and assigns the character 'A' to month[0], 'p' to month[1],.., 0 to month[5].
The end of the string in the above statement can also be represented as follows:
char month([] = { 'A','p','¢','1','1", "\0' };
C++ offers another style for initializing an array of characters. For instance, the statement
char month([] = "April";
has the same effect as the above statements. In this case, the characters of the string are enclosed in a

pair of double quotes. The compiler takes care of storing the ASCII codes of the characters of the string
in memory, and also stores the NULL terminator at the end.

Special characters can also be embedded within a string as illustrated in the program succ . cpp.
When manipulated using C++ I/O operators, they are interpreted as special characters and action is
taken according to their predefined meaning.

// succ.cpp: string with special characters
#include <iostream.h>

<0id main()

{ .

char msg[] = "C to C++\nC++ to Java\nJava to ...";

cout << "Please note the following message: " << endl;

cout << msg;

184 Mastering C++

Run

Please note the following message:
C to C++

C++ to Java

Java to ...

Note that the characters \ and n used in the string definition
char msg[] = "C to C++\nC++ to Java\nJava to ...";
are treated as a new line character.

6.6 Strings Manipulations

C++ has several built-in functions such as strlen(), strcat (), strlwr (), etc., for string ma-
nipulation. To use these functions, the header file string.h must be included in the program using
the statement

#include <string.h>

String Length

The string function strlen () returns the length of a given string. A string constant or an array of
characters can be passed as an argument. The length of the string excludes the end-of-string character
(NULL). The strlen.cpp illustrates the use of strlen() and user defined function to find the
length of the string.

// strien.cpp: computing length of string
#include <iostream.h>
#include <string.h>
void main()
{
char s1(25];
cout << "Enter your name: “;
cin >> s1;
cout << "strlen(sl): " << strlen(sl) << endl;

)

Run
Enter your name: Smrithi
strlen(sl): 7
. String Copy .

The string function strcpy () copies the contents of one string to another. It takes two arguments,
the first argument is the destination string array and the second argument is the source string array. The
source string is copied into the destination string. The program strcpy.cpp illustrates the use of
strcpy () to copy a string.

/ / strépy.cpp: copying string
‘4fiiclude <iostream.h>
#include <string.h>
vcid main()
{

char s1{25], s2[25];

Chapter 6: Arrays and Strings 185

cout << "Enter a string: ";

cin >> s1;

strcpy(s2, sl);

cout << "strcpy{ s2, sl): " << s2;
}
Run

Enter a string: Garbage
strcpy(s2, sl): Garbage

String Concatenation

The string function strcat () concatenates two strings resulting in a single string. It takes two
arguments, which are the destination and source strings. The destination and source strings are con-
catenated and the resultant string is stored in the destination (first) string. The program strcat .cpp
illustrates the use of strcat () to concatenate two strings.

/ / strcat.cpp: string concatenation
#include <iostream.h>
#include <string.h>
void main ()
char s1[40], s2([25]);
cout << "Enter string sl: ";
cin >> sl;
cout << "Enter string s2: ";
cin >> s2;
strcat(sl, s2);
cout << "strcat(sl, s2): " << sl;
}

Run

Enter string sl: ¢
Fnte:r string s2: ++
strcat(sl, s2 }): C++

String Comparison

The string function strcmp () compares two strings, character by character. It accepts two strings as
parameters and returns an integer, whose value is

e <0 if the first string is less than the second
e ==0 if both are identical
¢ >0 if the first string is greater than the second

Whenever two corresponding characters in the string differ. the string which has the character with
the higher ASCII value is greater. For example, consider the strings hello and Hello!!. The first
character itself differs. The ASCII coce forhis 104, while the ASCII code for H is 72. Since the ASCII
code of h 1s greater, the string hello is greater than the string Hel1o!. Once a differing character is
found. there is no need to compare remaining characters in the string. The program strcmp.cpp
illustrates the use of strcmp () to compare two strings.

186 Mastering C++

/ / stremp.cpp: string concatenation
#include <iostream.h>
#include <string.h>
void main()
{
char s1([25]), s2[25];
cout << "Enter string sl: “;
cin >> sl;
cout << "Enter string s2: *;
cin >> s2;
int status = strcmp(sl, s2);
cout << “"strcmp(sl, s2 y: “;
if(status == 0)
cout << sl << " is equal to " << s2;
else
if(status > 0)
cout << sl << " is greater than " << s§2;
else
cout << sl << " is less than " << s2;

}

Run

Enter string sl: Computer

Enter string s2: Computing
strcmp(sl, s2): Computer is less than Computing

String to Upper/Lower Case

The functions strlwr () and strupr () convert a string to lower-case ‘and upper-case respectively
and return the address of the converted string. The program uprlwr . cpp illustrates the conversion
of string to lower and upper cases.

/ / uprlwr.cpp: converting string to upper or lower case
#include <iostream.h>
#include <string.h>
void main ()
{
char s1([25]), temp([25];
cout << "Enter a string: *;
cin >> sl;
strcpy(temp, sl);

cout << "strupr(temp): " << strupr(temp) << endl;
cout << "strlwr(temp): " << strlwr(temp) << endl;
}
Run

Enter a string: Smrithi
strupr(temp): SMRITHI
strlwr(temp): smrithi

Chapter 6: Arrays and Strings 187

6.7 Arrays of Strings
An array of strings is a two dimensional array of characters and is defined as follows:

char array-name[row_size][column_size];
For instance, the statement

char person[10][15];
defines an array of string which can store names of 10 persons and each name cannot exceed 14
characters: 1 character is used to represent the end of a string. The name of the first person is accessed
by the expression person{0], and the second person by person[1], and so on. The individual
characters of a string can also be accessed. For instance, the first character of the first person is
accessed by the expression person{0] [0] and the fifth character in the 3" person’s name is
accessed by person{2] [4]. The program names . cpp illustrates the manipulation of an array of
strings.

// names.cpp: array of strings storing names of the persons
#include <icstream.h>
#include <string.h>
const int LEN = 15;
void main()
(
int i, n;
char person[10] [LEN];
cout << "How many persons ? ";

cin >> n;
for(i = 0;.1 < n; i++)
{

cout << "Enter person" << i+l << " name: ";
cin >> person[i];

}

COULLL Mmm oo m e oo o oo oo oo oS soossso—sos \n";
cout << "P# Person Name Length In lower case In UPPER case\n";
COULKL "mmmmmmm e e oo oo o o oo oo omSoSTooooooo \n";

for(i = 0; 1 < n; i++)
{
cout.width(2);
cout << i+l;
cout.width(LEN);
cout << person[i] << " "
cout.width(2);
cout << strlen(person[i]) << " v,
cout.width(LEN);
cout << strlwr (person(il):
cout .width(LEN);
cout << strupr(personfi]) << endl;
}

COULKL "mmmmmmmmmm e m e m e m S S oo oo oS o oSS S oSS S SooseooomTmTTT \n";

}

Run
Jow many persons ? 5

188 Mastering C++

Enter personl name: Anand
Enter person2 name: Viswapath
Enter person3 name: Archana
Enter person4 name: Yadunandan
Enter person5 name: Mallikarjun

P# Person Name Length In lower case In UPPCR case
1 Anand 5 anand ANAND
2 Viswanath 9 viswanath VISWANATH
3 Archana 7 archana ARCHANA
4 Yadunandan 10 yadunandan YADUNANDAN
5 Mallikarjun 11 mallikarjun MALLIKARJUN

An array of string can be initialized at the point of its definition as follows:
char array-name[row_sizel[column_size] = { “rowl string”, “row2-string”, ... };
It can also be defined as
char array-namel[row_sizel[column_size] =
{ { rowl string characters}, { row2 string characters}, .. };
For instance, the statement
char person[])[12])={"Anand", "Viswanath", "Archana*, “Yadunandan", *Mallikarjun"};

defines an array of strings and initializes them at the point of definition (see Figure 6.9 for the memory
representation). The above statement is equivalent to

char person[5] [12]={"Anand", "Viswanath", *Archana”, "Yadunandan", "Mallikarjun"};
The second dimension must be specified explicitly in the array definition, otherwise, the compiler
generates an error message. However, the first dimension can be skipped; the compiler computes this

value based on the number of values specified in the initialization list. This rule applies only when the
initialization appears at the point of definition.

0 1 2 3 4 5 6 7 8 9 10 N

0 A n a n d \O person|[0]
1 v i s w a n a t h \O person[1]
2 A r c h a n a \ 0 person{2]
3 Y a d u n a n d a n \0 person(3]
4 M a 1 1 i k a r 3 u n \0 | person(4]

Figure 6.9: Array of strings representation in memory

6.8 Evaluation Order/Undefined Behaviors

The order of evaluation of sub-expressions within an expression is undefined. Consider the following
segment of code:

Chapter 6: Arrays and Strings 189

int 1 = 0;
v[i] = 1++;

The second statement can be evaluated either as:

v(0] = 0;
or
v[1l] = 0;

The compiler can generate better code in the absence of restrictions on the expression evaluation order.
It can take advantage of underlying hardware architecture and generate the most optimal code. The
compiler can warn about such ambiguities. Unfortunately, most compilers do not report a warning about
such ambiguities.

The operators
&& ||
guarantees that their left-hand side operand is evaluated first before their right-hand side operand. For
instance, in the statement,
x = (y =5, y+t1);

the expression (y = 5, Y+ 1), the comma operator first assigns 5 to y and then evaluates the right-
hand side operand and the resulting value 6 is assigned to the x variable. Note that the sequencing
operator comma (,) is logically different from the comma used to separate arguments in a function call.
Consider the following statements:

f1(ali), i++)3 // two arguments
£2((alil, i++)) // one argument

The call of £1 () has two arguments, a[i} and i++, and the order of evaluation of the argument is
undefined. However, most compilers follow evaluation of arguments at a function call from right to left.
The function

f1(int a, int b))

{

cout. << a << " " << b;

}
when invoked as

£1(afi), i++)
whereal] = (1, 2, 3, 4, 5 Yandi = 0. The output will be 2 and 0. The parameters
evaluated are passed in the following order:
1. The contents of the variable i whose value is 0 i assigned to b, and then the expression i++ will be

evaluated, thereby i becomes 1.

2. The value of a{i] (now i holds the value 1) is 2 and is assigned to the variable a.

Review Questions

6.1 What are arrays ? Explain how they simplify programming with suitable examples. -

/6.2 Explain how comb sort algorithm is superior over bubble sort. What is their time complexity. Hint:
time complexity is measured in terms of number of elements compared, since comparison opera-
tion is the active operation in any sorting algorithm.

6.3 What are the side-effects of the following statements:
int a(100};

190 Mastering C++

al0] = 20;
al[l00] = 200;
cout << a[l1l01};
af-1] = 5;
cout << a{-1];
Does the compiler reports an error when illegal accesses are made to an array ?

6.4 What are multi-dimensional arrays ? Explain their syntax and mechanism for accessing their ele-
ments.

6.5 Write an interactive program for calculating grades of N students from 3 tests and present the
result in the following format:

6.6 Write a program for computing the norm of the matrix.

6.7 Can arrays be initialized at the point of their definition ? If yes, explain its syntax with suitable
examples ?

6.8 Write a program to find the symmetry of the matrix.

6.9 Whatare strings ? Are they standard or derived data type ? Write an interactive program to check
whether a given string is palindrome or not. What happens if the end-of-string character is
missing ?

6.10 Write a program to sort integer numbers using shell sort and compare its time complexity with that
of the comb sort.

6.11 Write a program for computing mean(m), variance, and standard deviation(s) of a set of numbers
using the following formulae:

n
- - 1
mean = m = = Y x
i1
n
. _ 2
variance = 2 ¥ (x;- m)

i

s = Vvariance

6.12 Write a program to find the transpose of a matrix. (The transpose can be obtained by inter-
changing the elements of rows and columns).

6.13 Write a program to find the saddle points in a matrix. It is computed as follows: Find out the
smallest element in a row. The saddle point exists in a row if an element is the largest element in that
corresponding column. For instance, consider the following matrix:

"
-

7 5 6
10 2 3
1 3 3

The saddle point results are as listed below:
In row 1, saddle point exists at column 2.

In row 2, saddle point does not exist.

In row 3, saddle point does not exist.

6 14 Write an interactive program to multiply two matrices and print the result in a matrix form.

7

Modular Programming with Functions

7.1 Introduction

Itis difficult to implement a large program even if its algorithm is available. To implement such a program
with ease, it should be split into a number of independent tasks, which can be easily designed, imple-
mented, and managed. This process of splitting a large program into small manageable tasks and
designing them independently is popularly called modular programming or divide-and-conquer tech-
nique. Large programs are more prone to errors and it is difficult to locate and isolate errors that creep
into them. A repeated group of instructions in a program can be organized as a function. It can be
invoked instead of having the same pattern of code wherever it is required as shown in Figure 7.1.

void main ()

{

code duplication
if function not used

™~
s

Stand-alone program

vaid main ()

{ CalculateTax ()
PSS { code
Sasetans // written

5 CalculateTax(); z Ananann only once

3 s if function is

S AAAAAAAA used
CalculateTax(); i })

A NAANAANA

AAAAAAAA

Figure 7.1: Functions for eliminating redundancy of code

192 Mastering C++

A function is a set of program statements that can be processed independently. A function can be
invoked which behaves as though its code is inserted at the point of the function call. The communica-
tion between a caller (calling function) and callee (called function) takes place through parameters.
The functions can be designed, developed, and implemented independently by different programmers.
The independent functions can be grouped to form a software library. Functions are independent
because variable names and labels defined within its body are local to it. The use of functions offer
flexibility in the design, development, and implementation of the program to solve complex problems.
The advantages of functions include the following:

+ Modular programming

+ Reduction in the amount of work and development time

+ Program and function debugging is easier

+ Division of work is simplified due to the use of divide-and-conquer principle

+ Reduction in size of the program due to code reusability

+ Functions can be accessed repeatedly without redevelopment, which in turn promotes reuse of code
+ Library of functions can be implemented by combining well designed, tested, and proven functions

The program taxl.cpp computes the tax amount of two persons based on their annual salary
without the use of functions.

// tax1l.cpp: tax calculation without using function
#include <iostream.h>
void main()
{
char Name[25];
double Salary, Tax;
cout << "Enter name of the lst person: *;
cin >> Name;
cout << "Enter Salary: *;
cin >> Salary;
if(Salary <= 90000)
Tax = Salary * 12.5 / 100;
else
Tax = Salary * 18.0 / 100;
cout << *The tax amount for " << Name << " is: " << Tax << endl;
cout << "Enter name of the 2nd person: *; cin >> Name;
cout << "Enter Salary: "; cin >> Salary;
if(salary <= 90000)
Tax = Salary * 12.5 / 100;
else
Tax = Salary * 18.0 / 100;
cout << "The tax amount for " << Name << " is: " << Tax << endl;

)
Run

Enter name of the lst person: Raikumar
Enter Salary: 130000

The tax amount for Rajkumar is: 23400
Enter name of the 2nd person: Savithri
Enter Salary: 90000

The tax amount for Savithri is: 11250

Chapter 7: Modular Programming with Functions

Multiple copies of the same pattern of code

193

can be climinated by grouping repeated statements

together 1o generate a function calculateTax (). as iliustrated in the program tax2.cpp.

// tax2.cpp: tax calculation using function

#include <iostream.h>

void CalculateTax ()

{
char Name([25];
double Salary,
cout << "Enter
cin >> Name;
cout << "Enter
cin >> Salary:
if(Ssalary <= 90000)

Tax;
name of the person:

Salary: ";

Tax = Salary * 12.5 / 100;
else
Tax = Salary * 18.0 / 100;

cout << "The tax amount for "
}

void main()

{
CalculateTax();
CalculateTax():

}

Run

Enter name of the person: Rajkumar

Enter Salary: 130000

The tax amount for Rajkumar is: 23400
Enter name of the person: Savithri
Enter Salary: 920000

The tax amount for Savithri is: 11250

In main (), the statement
CalculateTax();

<< Name << "

v,
'

is: " << Tax << endl;

is invoked twice to calculate tax for two persons. It computes the tax amount and displays it. The same

function can be invoked to calculate tax amounts fora

7.2 Function Components

large number of people using a loop construct.

Every function has the following elements associated with it:

« Function declaration or prototype.
«+ Function parameters (formal parameters)

+ Combination of function declaration and its definition.
« Function definition (function declarator and a function body).

¢ return statementi.
+ Function call.

A function can be executed using a function call in the program. The various components associated

with functions are shown in Figure 7.2.

194 Mastering C++

void func(int a, int b); —e—— prototype

formal parameters

void func(int a, int b) —am——.. declarator

.......... —am—;.. body

m—. call

actual parameters

Figure 7.2: Components of a function

The program max1. cpp illustrates the various components of a function. It computes the maxi-
mum of two integer numbers.

// maxl.cpp: maximum of two integer numbers
#include <iostream.h>

int max(int x, int y); // prototype

void main() // function caller
(

int a, b, c;

cout << "Enter two integers <a, b>: *;
cin >> a >> b;
¢ = max(a, b }); // function call
cout << "max(a, b): " << ¢ << endl;
}
int max(int x, int y) // function definition

{
// all the statements enclosed in braces forms body of the function

if(x>y)
return x; // function return
else
return y; // function return
}
Run
Enter two integers <a, b>: 20 10
max(a, b): 20

As discussed earlier, main () is a function, so it is not surprising that max () which is also a
function, appears similar to main (). The only special feature about main () is that it is always
executed first. It does not matter whethermain () is the first function in the program listing or is placed
elsewhere in the program; it will always be the first one to execute.

Chapter 7: Modular Programming with Functions 195

There are five elements involved in using a function: the function prototype, the function definition,
the function call, the function parameters, and the function return.

Function Prototype

The first function related statement in max1 . cpp is the function prototype. This is the line before the
beginning of main ():

int max{ int x, int y): // prototype
It provides the following information to the compiler:

« The name of the function,
« The type of the value returned (optional; default is an integer),
«» The number and the types of the arguments that must be supplied in a call to the function.

Function prototyping is one of the key improvements added to the C++ functions. When a function call
is encountered, the compiler checks the function call with its prototype so that correct argument types
are used. The compiler informs the user about any violations in the actual parameters that are to be
passed to a function.

A function prototype is a declaration statement which has the following syntax:
ret_val function_name(argumentl, argument2, ... , argumentn);

The ret_val specifies the datatype of the value in the return statement. The function can return any
data-type; if there is no return value, a keyword voidis placed before the function name. In a function
without any return value, a dummy return statement can be included before the closing brace. A
program can have more than one return statements. (Note: return is a keyword. The statement
return 0:is sufficient in place of the return (0);). The number of arguments to a function can be
fixed or variable. The function declaration terminates with a semicolon.

Consider the prototype statement
int max(int x, int y): // prototype

It informs the compiler that the function max has two arguments of type integer (the list of data types
separated by commas form the argument list). The functionmax () returns an integer value; the com-
piler knows how many bytes to retrieve and how to interpret the value returned by the function.
Function declarations are also called prototype, since they provide a model or blue print for the func-
tion. C++ makes prototyping mandatory if functions are defined after the functionmain. C++ assumes
voidtype in case no arguments are specified in the argument list; the default return type is an integer.

Function Definition

The function itself is referred to as function definition. The first line of the function definition is known
as function declarator and is followed by the function body. Figure 7.3 shows that the declarator and
the function body make up the function definition. The declarator and declaration must use the same
function name, the number of arguments, the arguments type and the return type. No other function
definitions are allowed within a function definition.

The body of the function is enclosed in braces. C++ allows the definition to be placed anywhere in
the program. If the function is defined before its invocation, then its prototypes declaration is optional.

196 Mastering C++

Function name
defines function X no semicolon

(int max(int x, int y) - function declarator
if (x > vy)
return x;
else
return y;

e function body

Figure 7.3: Function definition

Function Call

A function is a dormant entity, which gets life only when a call to the function is made. A function call
is specified by the function name followed by the arguments enclosed in parentheses and terminated by
a semicolon. The return type is not mentioned in the function call. For instance, in the functionmain ()
of the program max1.cpp, the statement
c =max(a, b); // function call

invokes the function max () with two integer parameters. Executing the call statement causes the
control to be transferred to the first statement in the function body and after execution of the function
body the control is returned to the statement following the function call. The max () returns the
maximum of the parameters a and b. The return value is assigned to the local variable c inmain ().

Function Parameters
The parameters specified in the function call are known as actual parameters and those specitied in the
function declarator are known as formal parameters. For instance, in main (), the statement

¢ = max(a, b); // function call
passes the parameters (actual parameters) a and b to max (). The parameters x and y are formal
parameters. When a function call is made, a one-to-one correspondence is established between the
actual and the formal parameters. In this case, the value of the variable a is assigned to the variable x
and that of b is assigned toy. The scope of formal parameters is limited to its function only.

Function Return

Functions can be grouped into two categories: functions that do not have a return value (void
functions) and functions that have a return value. The statements

return Xx; // function return
and
return y; // function return

in function max () are called function return statements. The caller must be able to ieeeive the value
returned by the function (but not mandatory). In the statement

c =max(a, b); // function call
. the value returned by the function max () is assigned to the local variable ¢ in main (). Figure 7.4
"shows the function max () returning a value to the caller.

Chapter 7: Modular Programming with Functions 197

caller callee
void main() int max(x, y)
{ {
ANAAAAAA AAAAAAAA
AAAAAAAA
ANAAAAAAA
else
c=max{a, b); e return y;
ANANAAAAAN !
50000006 } /
AAAAANAAA

The value of y is,
returned to main ()
and assigned to c.

Figure 7.4: Function returning a value

The return statement in a function need not be at the end of the function. It can occur anywhere in
the function body and as soon as it is encountered, execution control will be returned to the caller.

A function that does not return anything is indicated by the keyword void. It has the following
form:

void FunctionName (ParameterlList)
{

statement (s) ;

return; // return is optional
}

In void functions, the use of return statement is optional.

Elimination of the Function Prototype

The function declaration can be eliminated by defining the function before calling it. The program
max?2 . cpp illustrates this concept.

// max2.cpp: maximum of two integer numbers

#include <iostream.h>

int max(int x, int y) // function definition

{
// all the statements enclosed in braces forms body of the function
if(x>vy)

return X; // function return
else
return Yy; // function return
}
void main() // function caller

{
int a, b, c¢;
cout << "Enter two integers <a, b>: ";
cin >> a >> b;
c = max(a, b); // function call

198 Mastering C++
cout << "max{ a, b): " << ¢ << endl;

Run
Enter two integers <a, b>: 20 10
max(a, b): 20

The definition of max () occurs before itis invoked inmain (). eliminating the need for a function
prototype. In the case of a program having a large number of functions. the programmer has to arrange
the functions. such that they are defined before they arc called by any other function.

7.3 Passing Data to Functions

The entity used to convey the message to a function is the function argument. It can be a numeric
constant, a variable, multiple variables, user defined data type, etc.

Passing Constants as Arguments

The program chart1. cpp illustrates the passing of a numeric constant as an argument to a function.
This constant argument is assigned to the formal parameter which is processed in the function body.

// chartl.cpp: Percentage chart by passing numeric value
#include <iostream.h>
void PercentageChart(int percentage)
void main{()
{
cout << "Sridevi : “;
PercentageChart(50);
cout << "Rajkumar: ;
PercentageChart(84);
cout << "Savithri: ;
PercentageChart(79);
cout << "Anand "y
PercentageChart{ 74);
}
void PercentageChart(int percentage
{
for(int i = 0; i1 < percentage/2; i++)
cout << '\xCD'; // double line character (see ASCII table)
cout << endl;
}

Run
Sridevi :
Rajkumar:
Savithri: =====z===z==================c============
Anand : T TS TS TS =S =S=S=S=S=S=S=S==S=SS =SS SESS

In main (), the statement
PercentageChart(84);
invokes the function PercentageChart with the integer constant 84 to draw a chart. It draws a

Chapter 7: Modular Programming with Functions 199

horizontal line, made up of the double-line graphic character ('\xCD"') on the screen.
In the function definition, the variable name percentage is placed between the parentheses
following the function name PercentageChart. The invocation of this function by the statément
PercentageChart(84);
ensures that the numeric constant 84 is assigned to the variable percentage as shown in Figure 7.5.

\{IOId main (void) int PercentageChart(int percentage)
FAAANAAAAA AN { PANANAAAA A

AN AN AAAAAANAAA
AN AAAAAAAA

PercentageChart (84) ; }

AAAAANAAA

PR Callee

Caller

Figure 7.5: Passing value to a function

Passing Variables as Arguments

Similar to constants, variables can also be passed as arguments to a function. The programchart2 . cpp
illustrates the mechanism of passing a variable as an argument to a function.

// chart2.cpp: Percentage chart by passing variables
#include <iostream.h>
void PercentageChart(int percentage)
void main()
{
int ml, m2, m3, m4;
cout << "Enter percentage score of Sri, Raj, Savi, An: ";
ecin »>> ml >> m2 >> m3 >> m4;
cout << "Sridevi : ";
PercentageChart(ml) ;
cout << "Rajkumar: ";
PercentageChart(m2 };
cout << "Savithri: ";
PercentageChart(m3);
cout << "Anand "y
PercentageChart(m4 };
}
void PercentageChart(int percentage)
{
for(int i = 0; i < percentage/2; i++)
cout << '\xCD’'; // double line character (see ASCII table)
cout << endl;

200 Mastering C++

Run

Enter percentage score of Sri, Raj, Savi, An: 55 92 83 67

Sridevi : =========z=z=z=z==z=s=s===z========

Rajkumar: —=============z
Savithri: ====-======z====cz
Anand ! EERCESESESSEEEESSCTsss—s=——====

In main (), the statement

PercentageChart(mZ) ;

invokes the function PercentageChart. It draws a horizontal line, made up of the double-line
graphic character ('xCD') on the screen. It ensures that the contents of the variable m2 is assigned
to the variable percentage as shown in Figure 7.6. Note that the names of-the parameters in the
calling and called functions can be the same or different, since the compiler treats them as different

variables.

void main (void)

{

NANANAA NN
AAAAAA A AN
PNANAANAA AN

m2=92;
PercentageChart (m2) ;

ANANAAAS A
PN A
AAAAAA A

Caller

int PercentageChart(int percentage)

Callee

Figure 7.6: Variable used as argument

Passing Multiple Arguments

C++ imposes no limitation on the number of arguments that can be passed to a function. The program
chart3.cpp passes two arguments to the function PercentageChart (), whose purpose is to

draw various style charts on the screen.

// chart3d.cpp: Percentage chart by passing multiple variables

#include <iostream.h>’

void PercentageChart(int percentage, char style };

void main()

{

int ml, m2, m3, m4;

cout << "Enter percentage score of Sri, Raj, Savi, An: ";

cin >> ml >> m2 >> m3 >> m4;
cout << "Sridevi : *;
PercentageChart(ml, '*' };
cout << "Rajkumar: *;

